Context-Sensitive MTL Networks for Machine Lifelong Learning
نویسندگان
چکیده
Context-sensitive Multiple Task Learning, or csMTL, is presented as a method of inductive transfer that uses a single output neural network and additional contextual inputs for learning multiple tasks. The csMTL method is tested on three task domains and shown to produce hypotheses for a primary task that are significantly better than standard MTL hypotheses when learning in the presence of related and unrelated tasks. A new measure of task relatedness, based on the context input weights, is shown to have promise. The paper also outlines a machine lifelong learning system that uses csMTL for sequentially learning multiple tasks. The approach satisfies a number of important requirements for knowledge retention and inductive transfer including the elimination of redundant outputs, representational transfer for rapid but effective short-term learning and functional transfer via task rehearsal for long-term consolidation.
منابع مشابه
Machine Life-Long Learning with csMTL Networks
Multiple task learning (MTL) neural networks are one of the better documented methods of inductive transfer of task knowledge (Caruana 1997). An MTL network is a feedforward multi-layer network with an output node for each task being learned. The standard back-propagation of error learning algorithm is used to train all tasks in parallel. The sharing of internal representation in the hidden nod...
متن کاملcsMTL: a Context Sensitive Lifelong Learning System
csMTL, or context-sensitive Multiple Task Learning, is presented as a method of inductive transfer that uses a single output neural network and additional contextual inputs for learning multiple tasks. The csMTL approach is demonstrated to produce hypotheses that are equivalent to or better than standard MTL hypotheses when learning a primary task in the presence of related and unrelated tasks....
متن کاملAn Overview of Multi-Task Learning in Deep Neural Networks
Multi-task learning (MTL) has led to successes in many applications of machine learning, from natural language processing and speech recognition to computer vision and drug discovery. This article aims to give a general overview of MTL, particularly in deep neural networks. It introduces the two most common methods for MTL in Deep Learning, gives an overview of the literature, and discusses rec...
متن کاملPersonalized Multitask Learning for Predicting Tomorrow’s Mood, Stress, and Health
While accurately predicting mood and wellbeing could have a number of important clinical benefits, traditional machine learning (ML) methods frequently yield low performance in this domain. We posit that this is because a one-size-fits-all machine learning model is inherently ill-suited to predicting outcomes like mood and stress, which vary greatly due to individual differences. Therefore, we ...
متن کاملPhonetic Context Embeddings for DNN-HMM Phone Recognition
This paper proposes an approach, named phonetic context embedding, to model phonetic context effects for deep neural network hidden Markov model (DNN-HMM) phone recognition. Phonetic context embeddings can be regarded as continuous and distributed vector representations of context-dependent phonetic units (e.g., triphones). In this work they are computed using neural networks. First, all phone ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007